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Human body surfaces, such as the skin, intestines, and respiratory and urogenital tracts, are colonized by a large number of
microorganisms, including bacteria, fungi, and viruses, with the gut being the most densely and extensively colonized organ.
The microbiome plays an essential role in immune system development and tissue homeostasis. Gut microbiota dysbiosis not
only modulates the immune responses of the gastrointestinal (GI) tract but also impacts the immunity of distal organs, such as
the lung, further affecting lung health and respiratory diseases. Here, we review the recent evidence of the correlations and
underlying mechanisms of the relationship between the gut microbiota and common respiratory diseases, including asthma,
chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), lung cancer, and respiratory infection, and probiotic
development as a therapeutic intervention for these diseases.

1. Introduction

Chronic respiratory diseases, including asthma and chronic
obstructive pulmonary disease (COPD), as well as respiratory
virus infection, are often accompanied by gastrointestinal
diseases or symptoms [1–3]. Patients with gastrointestinal
diseases, such as inflammatory bowel disease (IBD) and gas-
troesophageal reflux, are prone to develop pulmonary dys-
function and have an increased incidence of respiratory
disease [4, 5]. These connections suggest a vital communica-
tion between the gut and lung. The human microbiome is
believed to contribute to homeostasis and disease and is
responsible for the interactions between these two mucosal
sites. Changes in microbial composition or/and diversity will
not only directly affect the colonized organ itself but also
impact distant organs and systems [6]. In particular, gut
microbiota dysbiosis is associated with various diseases, such
as allergies, autoimmune diseases, diabetes, obesity, and can-
cer [7]. Recently, an increasing amount of evidence has indi-
cated that the gut microbiota is closely related to respiratory
health and disease, playing a crucial role in the development
of asthma, COPD, cystic fibrosis (CF), lung cancer, and respi-
ratory infection [8–11]. In this review, we summarize the

recent findings involving the relationship and mechanisms
underlying the relationship between the gut microbiota and
common respiratory diseases, including asthma, COPD,
CF, lung cancer, respiratory infection, and other respiratory
diseases, and the use of probiotics for improving or treating
these diseases.

2. The Gut and Airway Microbiome

The human gastrointestinal (GI) tract harbors approximately
1014 bacteria consisting up to 1000 different species [12], and
the advance of sequencing technology has rendered the gut
microbiota the most widely studied microbiome of the
human body. However, the study of the airway microbiota
is still in its infancy when compared with that of the gut
microbiota. At the phylum level, Firmicutes and Bacteroi-
detes account for more than 90% of the gut microbial com-
munity [13]. The microbiota of the upper and lower
respiratory tracts are distinct, with more Firmicutes and
Actinobacteria in the nostril and more Firmicutes, Proteo-
bacteria, and Bacteroidetes in the oropharynx [14], whereas
there are more Bacteroidetes and Firmicutes in the lung
[15]. At the genus level, Bacteroides, Faecalibacterium, and
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Bifidobacterium are enriched in the gut [16], while Prevotella,
Veillonella, and Streptococcus are the prominent genera in the
lung [15]. Although the gut and respiratory microbiota
exhibit compositional differences, the epithelia of both the
GI and respiratory tracts develop from a common embryonic
structure, the anatomical structures and functions of the two
mucosal sites are similar, and early-life microbial coloniza-
tion of the gut and lung exhibits similarities. Therefore, accu-
mulating evidence has highlighted the relationship and
crosstalk between the gut and lung, referred to as the gut-
lung axis [10, 17, 18].

The gut microbiota is affected by many factors, such as
drugs, diet, mode of delivery, and feeding practices, which
may play a role in susceptibility to respiratory diseases
(Figure 1). For example, early-life acid-suppressive medica-
tions and antibiotic use, fast food consumption, caesarian-
section delivery, and formula feeding are correlated with an
increased risk of asthma, while a higher fiber intake, vaginal
delivery, and breastfeeding are negatively correlated with
asthma [19–25]. In addition, diet, smoke, and drugs, such
as antibiotic and immunosuppressant, can also influence
rheumatoid arthritis (RA) and the gut microbiota [26, 27].

3. The Gut Microbiota and Respiratory Diseases

3.1. Asthma. Asthma is a chronic airway inflammatory dis-
ease characterized by reversible airflow restriction and airway
hyperresponsiveness. The increasing morbidity and mortal-
ity of asthma have made it a serious threat to human health.
According to the “hygiene hypothesis,” early-life exposure to
specific microbiota constituents is essential for the develop-
ment and maturity of the immune system, and their absence
may increase the susceptibility to asthma and allergic dis-
eases [28]. With the advance of sequencing technologies,
an increasing number of studies have revealed a close rela-
tionship between the gut microbiota and asthma. The gut
microbiota is different between healthy controls (HCs) and
asthmatic individuals and is associated with the develop-
ment of asthma.

Higher microbial diversity is often regarded as beneficial.
A recent study showed a connection between low gut micro-
bial diversity in early life and asthma in childhood [29].
Breastfeeding may protect against asthma and allergic disease
in children, and gut bacterial diversity was lower in formula-
fed infants than in breastfed infants [30]. In addition to
microbial diversity, specific gut bacteria have also been found
to be closely related to asthma. For instance, Clostridium and
Eggerthella lenta were more abundant in the gut of asthma
patients than in that of HCs [31]. Furthermore, the decrease
in Bifidobacterium, Akkermansia, and Faecalibacterium
abundances and the increase in Candida and Rhodotorula
abundances increased a child’s risk of developing allergies
and asthma [32], and intestinal colonization by Clostridium
difficile at 1 month of age was associated with asthma at 6-7
years of age [33]. Therefore, we speculate that the well-
balanced commensal microbiota in the GI tract may be ben-
eficial to host health and that reduced microbial diversity
may be a marker for underlying pathologic conditions.

Noting the altered gut microbiota in asthma patients,
researchers have attempted to modulate the pulmonary
immune response as well as prevent and treat asthma
through improving the gut microbiota. Arrieta et al. revealed
a significant reduction in Lachnospira, Veillonella, Faecali-
bacterium, and Rothia abundances in the gut of asthmatic
infants. Furthermore, inoculations of these bacteria in
germ-free (GF) mice ameliorated airway inflammation and
prevented asthma development [34]. Similar results were
obtained in both murine and human studies in which oral
administration of Lactobacillus rhamnosus, Lactobacillus
casei, and Bifidobacterium breve potentially prevented and
treated allergies and asthma [35–37]. Another study indi-
cated that probiotic intervention for pregnant women and
their infants who were at a high risk of allergy could protect
caesarian-delivered children from allergic disease [38]. Addi-
tionally, a double-blind, randomized, placebo-controlled trial
of 160 asthmatic children suggested that Lactobacillus can
reduce asthma severity and improve asthma control [39].

However, other studies have drawn opposite conclusions,
finding that probiotics do not have significant benefits in
asthmatic children [40]. In these randomized controlled tri-
als (RCTs), probiotic supplementation (such as with Lacto-
bacillus and Bifidobacterium) for 7 weeks to 6 months was
found to have no preventive or therapeutic effects on chil-
dren with a high risk of asthma or on asthmatic patients.
No significant differences in the outcome measures were
observed between the probiotic and placebo groups, includ-
ing the incidence of asthma, clinical outcomes (asthma-
related events, quality of life, respiratory tract infections,
antibiotic use, and asthma exacerbations), and pulmonary
function (fraction of exhaled nitric oxide (FeNO) and forced
expiratory volume in 1 s (FEV1)) [41–46]. Although probio-
tics had no significantly beneficial effects on asthma, the pos-
sibility of preventing and treating asthma cannot be denied.
In addition, fecal microbiota transplantation (FMT) is
another way to improve the gut microbiota, but its clinical
application is currently limited in asthma. Additional studies
are required to confirm the clinical stability and safety of both
probiotic supplementation and FMT. In summary, the gut
microbiota is closely associated with asthma, and its imbal-
ance is related to an increased risk and severity of asthma,
suggesting that appropriate gut microbiota intervention
may be a feasible way to prevent and treat asthma.

Probiotics are also used in patients with autoimmune dis-
eases, such as RA, which have been shown to be associated
with the gut microbiota [47]. An early study reported that
Lactobacillus salivarius, Lactobacillus iners, and Lactobacillus
ruminis were increased in the gut of untreated RA patients,
suggesting that a relationship potentially exists between the
Lactobacillus community and the development of RA [48].
RCTs have demonstrated beneficial the effects of Lactobacil-
lus acidophilus, Lactobacillus casei, or Bifidobacterium bifi-
dum in RA patients [49, 50]. In contrast, Pineda et al.
found that Lactobacillus rhamnosus and Lactobacillus reuteri
did not clinically improve RA [51]. Probiotics have been
shown to regulate immune system function and affect
inflammation in a strain-specific manner. Lactobacilli are
probiotic bacteria; however, different Lactobacillus species
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have different effects on RA, and some Lactobacillus species
may cause arthritis [52]. For example, Lactobacillus casei
plays an important role in inducing arthritis, while Lacto-
bacillus fermentum does not induce arthritis [53]. There-
fore, regarding probiotic supplementation, it is highly

important to choose a bacterial strain and dosage that are
safe and beneficial.

3.2. COPD. COPD, a common chronic, preventable, and
treatable respiratory disease, is characterized by persistent
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Figure 1: The role of gut microbiota in respiratory disease and homeostasis. The dysbiosis of gut microbiota contributes to respiratory
diseases (a), while a healthy gut microbiota plays a protective role in the lung (b). The gut microbiota is influenced by several factors,
including antibiotics, probiotics, cigarette smoke, diets, and fecal microbiota transplantation (FMT), and is associated with lung health and
disease by regulating the respiratory immunity and inflammation through the blood and lymphatic system. ↑: increase; ↓: decrease.
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airflow limitation and increased airway inflammation.
Worldwide, COPD has been a major public health problem
because of its high prevalence, morbidity, and mortality.
Although much evidence has shown a coexistence of COPD
and chronic gastrointestinal diseases such as IBD, few studies
have reported the gut microbiota in COPD patients. Smoking
is the principal cause of developing COPD and is associated
with the microbial community and immune response of the
GI tract [54]. The gut microbiota changes along with differ-
ent cigarette smoking statuses [55]; Biedermann et al. found
an altered gut microbiota in healthy smokers compared with
that in nonsmokers, and they further observed an increase in
Actinobacteria and Firmicutes and a decrease in Bacteroi-
detes and Proteobacteria abundances after smoking cessation
[56]. In a mouse study, Lachnospiraceae sp. was increased in
the gut after smoke exposure [54]. Although few studies have
identified the direct association between the gut microbiota
and COPD, there is evidence that the gut microbiota may
play a vital role in COPD induced by cigarette smoke.

Similarly, there have been relatively few studies about
probiotics that revealed the connection between the gut
microbiota and COPD. For example, intragastric supplemen-
tation with Lactobacillus rhamnosus and Bifidobacterium
breve in mice with COPD attenuated airway inflammation
and alveolar damage [57]. In vitro, these two probiotics
showed a similar anti-inflammatory effect on cigarette
smoke-induced inflammation in human macrophages [58].
In the future, additional studies conducted on COPD
patients are required to investigate and confirm the role of
probiotics in COPD and to provide new therapeutic strate-
gies for COPD.

3.3. CF. CF, a common autosomal recessive disease that
affects mainly the lungs, is primarily driven by cystic fibrosis
transmembrane conductance regulator (CFTR) mutation.
The GI tract also strongly presents CFTR dysfunction and
is among the earliest parts of the body affected in CF patients,
suggesting a close link between the gut and lung. In CF
patients, the gut microbiota was significantly altered, with
reduced bacterial abundance, richness, and diversity and dif-
ferent microbial compositions compared to those in HCs
[59–61]. For example, increased abundances of Staphylococ-
cus, Streptococcus, and Veillonella dispar and decreased
abundances of Bacteroides, Bifidobacterium adolescentis,
and Faecalibacterium prausnitzii were observed in the gut
of CF patients compared with those of HCs [62]. Impor-
tantly, the gut microbiota, which was reported to be associ-
ated with CFTR variants [63], seems to be essential for the
pathophysiology and development of CF. A murine study
indicated that the loss of functional CFTR was associated
with augmentation of pathogenic bacteria, such as Mycobac-
teria and Bacteroides fragilis [64]. Moreover, several cross-
sectional studies revealed a certain relationship between the
gut microbiota and lung function, disease exacerbation, and
severity of CF patients [65–67].

In recent years, numerous RCTs have shown that restora-
tion of the gut microbiota followed by probiotic supplemen-
tation is related to improvement of CF, further strengthening
the idea that the gut microbiota can influence airway inflam-

mation in CF. Lactobacillus administration caused a reduc-
tion in bacterial density and an increase in microbial
diversity in the gut [68], as well as beneficial effects on exac-
erbation risk and quality of life in CF patients [69]. However,
some inconsistent results were also yielded; for example, Van
Biervliet et al. found no significant differences in pulmonary
function and disease exacerbations between probiotic and
placebo groups [70]. Therefore, according to a meta-analysis,
fastidiously designed and adequate RCTs are needed to assess
the safety and efficacy of probiotics and to ascertain the spe-
cific probiotic strains or dose that can be of significant benefit
for CF patients [71].

3.4. Lung Cancer. Lung cancer is one of the malignant
tumors with the fastest growth of morbidity and mortality
and has become the greatest threat to human health. Antibi-
otics are believed to alter the gut microbiota, and a large
demographic study found that exposure to certain antibi-
otics, such as penicillin, cephalosporins, or macrolides, was
associated with an increased risk of lung cancer [72], which
suggested a close correlation between the gut microbiota and
lung cancer. Using 16S rRNA sequencing, researchers found
no significant difference in alpha diversity but a difference in
gut microbiota beta diversity between patients with lung
cancer and HCs [73, 74]. Moreover, at the phylum and
genus levels, lung cancer patients had an increased abun-
dance of Enterococcus and a reduced level of the phylum
Actinobacteria and genus Bifidobacterium, and these micro-
bial communities might be potential biomarkers for lung
carcinogenesis [73].

Recently, several studies have indicated that the gut
microbiota also contributes to the effect of lung cancer ther-
apeutics. Patients with non-small-cell lung cancer (NSCLC)
who responded to antiprogrammed death 1 (PD-1) immu-
notherapy (responders) harbored a higher gut microbial
diversity than those who did not respond (nonresponders),
and gut microbial diversity was positively associated with
progression-free survival (PFS) [75]. Another study revealed
that responders showed increased abundances of Akkerman-
sia muciniphila, Ruminococcus, Eubacterium, and Alistipes
and decreased abundances of Bifidobacterium and Parabac-
teroides in the gut compared with those of nonresponders
[76]. In addition, antibiotic use can influence the efficacy
of lung cancer therapy. Previous studies found that antibi-
otics before and during antitumor therapy significantly
reduced the clinical benefit (PFS and overall survival) of
antitumor drugs in patients with NSCLC [77, 78]. Further-
more, FMT into GF or antibiotic-treated mice can amelio-
rate antitumor effects and clinical activity of antitumor
drugs [79]. Similarly, supplementation with Enterococcus
hirae and Barnesiella intestinihominis can prolong PFS in
mice with advanced lung cancer undergoing chemoimmu-
notherapy [80]. Taken together, the gut microbiota mark-
edly influences the outcome of antitumor therapy for lung
cancer, suggesting a potential strategy to improve the clin-
ical outcomes of patients with lung cancer by modulating
the gut microbiota. However, a large number of clinical
studies are required to confirm the effectiveness and safety
of FMT and probiotics.
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3.5. Respiratory Infection. Respiratory infection is the most
common infectious disease and is a leading cause of mor-
bidity and mortality worldwide. The gut commensal micro-
biota provides essential benefits to pulmonary mucosal
immunity and plays protective roles in respiratory infection
by distally driving host responses to pneumonia [81].
Depletion or absence of the gut microbiota is believed to
influence the host immune response. Schuijt et al. found
that microbiota-depleted mice showed increased bacterial
dissemination, inflammation, organ damage, and mortality
compared with control mice, and FMT reversed the gut
microbiota diversity and enhanced the host defense against
pneumonia [82]. In addition, the gut microbiota differed
between patients with respiratory infection and HCs. It
was reported that certain gut microbiota, such as Entero-
coccaceae, was associated with community-acquired pneu-
monia (CAP) [83], and respiratory syncytial virus and
influenza virus infection resulted in a dysbiotic gut microbi-
ota in mice [84]. Many studies have suggested that oral
administration of probiotics can not only protect against
bacterial pneumonia [85] but also contribute to accelerated
recovery from respiratory viral infection [86, 87], further
emphasizing the crucial role of the gut microbiota in respi-
ratory infection.

Tuberculosis (TB) typically affects the lungs (pulmonary
TB), causing approximately 10 million cases and over 1 mil-
lion deaths per year worldwide, with the heaviest toll in low-
and middle-income countries [88]. Likewise, the gut com-
mensal microbiota can protect against early lung coloniza-
tion by Mycobacterium tuberculosis (Mtb) [89]. Disruption
of the gut microbiota with antibiotics increased the burden
and dissemination of Mtb, and FMT reconstituted the gut
microbiota and restored TB containment by reducing the
Mtb burden [90]. The gut microbiota was significantly differ-
ent between patients with TB and HCs. At the phylum level,
Actinobacteria and Proteobacteria, which contain many
pathogenic species, were enriched in the gut of TB patients,
while Bacteroidetes, which contains a variety of beneficial
commensal microbiota species, was decreased in TB patients
compared to those in HCs [91]. At the genus level, several
butyrate and propionate-producing bacteria, such as Faecali-
bacterium, Roseburia, Eubacterium, and Phascolarctobacter-
ium, were more abundant in TB patients than in HCs [92].
Similar to antibiotic and antitumor therapy, anti-TB treat-
ment also has dramatic effects on the gut microbiota. Patients
who underwent standard HRZE (isoniazid, rifampicin, pyra-
zinamide, and ethambutol) therapy exhibited a perturbed gut
microbiota, with a depletion of Ruminococcus, Eubacterium,
Lactobacillus, and Bacteroides and an increase in Erysipelato-
clostridium and Prevotella abundances [93], and HRZ(E)-
induced dysbiosis was long lasting in both mice and humans
[94]. Furthermore, studies on probiotics suggested that
supplementation with Lactobacillus can restore anti-Mtb
immunity in the lungs [95]. Taken together, these findings
indicate that the gut microbiota may contribute to the path-
ophysiology of TB.

3.6. Other Respiratory Diseases. In addition to the above com-
mon respiratory diseases, other respiratory disorders, such as

ILD, acute respiratory distress syndrome (ARDS), acute lung
injury (ALI), and ventilator-associated pneumonia (VAP),
also show a certain correlation with the gut microbiota. For
example, ILD is characterized by progressive fibrosis and
respiratory failure, and changes in the gut microbiota have
been reported in patients with silicosis and pulmonary fibro-
sis [96]. ARDS/ALI is the most common form of organ fail-
ure in critically ill patients, and VAP, which is among the
most common infections in mechanically ventilated patients,
has a high mortality rate [97, 98]. Previous studies revealed
that gut-associated bacteria and pathogens were enriched in
the bronchoalveolar lavage fluid (BALF) of patients with
ARDS, which suggested gut-lung translocation [99, 100].
Additionally, the GI microbiota contributes to the develop-
ment of ALI in mice [101], and FMT can significantly reduce
ALI inflammation [102]. RCTs of ventilated patients sug-
gested that patients treated with probiotics had a decreased
incidence of microbiologically confirmed VAP, as well as
reduced durations of intensive care unit [103] and hospital
stays [104]. A meta-analysis also found an association
between probiotic supplementation and reduced VAP inci-
dence, suggesting a clinical benefit of probiotics for ventilated
patients [105].

4. The Complex Interactions between the Gut
and Lungs

Cigarette smoking, which is a risk factor for many diseases,
can not only change the lung microbiota but also affect the
gut microbiota [55, 106]. Lung mucosal exposure to cigarette
smoke may be involved in the development of autoantibodies
associated with RA, such as peptidylarginine deiminase
(PAD) 2 [107], suggesting that the lungs could be a site of
autoimmunity generation in RA. Scher et al. found that the
lung microbiota in RA patients was similar to that in sarcoid-
osis patients, characterized by reduced alpha diversity and
decreased abundance of Actinomyces and Burkholderia
[108]. The notion that the gut microbiota influences the local
and systemic immune systems is not novel, and the role of
the gut microbiota in autoimmune diseases, including RA,
is currently well characterized [47]. Since the lungs and gut
are both mucosal sites that are exposed to environmental fac-
tors, it is possible that both organs share microbiota and that
the microbiota can induce local and systemic immunity/in-
flammation in both organs. This evidence suggests that the
gut/lung microbiota may potentially drive the initiation of
autoimmune diseases.

Previous studies have found an altered function and
structure in intestinal mucosa in asthma patients and
increased intestinal permeability in COPD patients [109,
110], further supporting the hypothesis that a link exists
between the gut and lungs. Moreover, a growing number of
studies have suggested that an immunological relationship
exists between the gut and lungs [111, 112]. The gut microbi-
ota can shape local intestinal and systemic immunity and the
lung mucosa, thereby affecting respiratory diseases. Taken
together, the complex interaction between the gut and lungs
is likely to be mediated by locally resident microbiota.
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Table 1: The possible mechanisms underlying the effects of the gut microbiota on respiratory diseases.

Respiratory
diseases

Alterations in the
gut microbiota

Possible mechanisms References

Asthma

Gut microbiota
disrupted by
antibiotics

Exacerbate Th2 responses by increasing the infiltration of inflammatory
cells and the production of inflammatory cytokines (IL-4 and IL-13).

[117, 118]

Reduce Treg abundance in the lung. [119]

Exaggerate Th1/Th17 adaptive immune responses in the lung. [120]

GF mice

Elevate the total number of eosinophils, number of CD4+ T cells,
and level of Th2 cytokines and alter the number and phenotype of

conventional DCs in the airways.
[114]

Increase CXCL16 expression and accumulate iNKT cells in the gut and lungs. [121]

Probiotics

Reverse the Th1/Th2 imbalance: increase the levels of the anti-inflammatory
cytokine IL-10 while reduce the levels of proinflammatory cytokines such as

IL-4, IL-5, and IL-13.
[122–125]

Increase PPARγ expression of DCs in the lung. [126]

Increase lung CD4+ T cell and CD4+Foxp3+ Treg abundance while decrease
activated CD11b+ DC abundance.

[37]

Decrease MMP9 expression in the BALF and serum and inhibit inflammatory
cell infiltration into the lung.

[36]

COPD

Cigarette smoke

Alter mucin gene expression and cytokine production in the gut; increase
Muc2, Muc3, and Muc4 expression; and increase CXCL2 and IL-6 expression

while decrease IFN-γ and TGF-β expression.
[54]

Inhibit the NK-κB pathway by reducing p65 phosphorylation and
IκBα in the gut.

[127]

Probiotics
Suppress macrophage inflammation by inducing the expression of IL-1β,

IL-6, IL-10, IL-23, TNF-α, CXCL-8, and HMGB1.
[58]

Increase NK cell activity and the number of CD16+ cells. [128]

CF
Probiotics

Reduce IL-8 production by intestinal cells. [129]

Reduce the level of the gut inflammatory marker calprotectin. [68]

Antibiotic treatment
Augment the proportions of Th17, CD8+ IL-17+, and CD8+ IFNγ+

lymphocytes and IL-17-producing γδ T cells.
[130]

Lung cancer

Gut microbiota
disrupted by
antibiotics

Upregulate the expression of VEGFA and downregulate the expression
of BAX and CDKN1B while reduce IFN-γ, GZMB, and PRF1 produced

by CD8+ T cells.
[131]

Suppress CTX-induced Th17 responses and reduce the abundance
of tumor-infiltrating CD3+ T cells and Th1 cells.

[132]

FMT Accumulate CCR9+CXCR3+CD4+ T cells into the tumor microenvironment. [79]

Probiotics
Upregulate the mRNA levels of IFN-γ, GZMB, and PRF1. [131]

Boost CTX-induced anticancer Th1 and Tc1 responses and promote the
infiltration of IFN-γ+γδT cells into cancer lesions.

[80]

Respiratory
infection

Commensal gut
microbiota

SFB promotes pulmonary Th17 immunity as demonstrated by increased
IL-22 and IL-22+ TCRβ+ cell levels.

[133]

Protect against Mtb infection by improving the activity of MAIT
cells in the lungs.

[89]

Regulate virus-specific CD4 and CD8 T cell and antibody responses. [134]

Contribute to the accumulation of IL-22-producing ILC3s in newborn lung. [81]

Induce NF-κB activation in the lung through TLR4. [135, 136]

Gut microbiota
disrupted by
antibiotics

Reduce pulmonary GM-CSF production through IL-17A signaling. [115]

Reduce MAIT cell and IL-17A levels. [89]

Reduce mincle expression on lung DCs. [95]

Decrease bacterial killing activity of alveolar macrophages while increase
the levels of proinflammatory cytokines such as IL-6 and IL-1β in the lung.

[136]
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5. Possible Mechanisms of the Gut
Microbiota in Respiratory Diseases

The gut commensal microbiota contributes to influencing and
maintaining body homeostasis by regulating the immune
response of both the GI system and distal organs. The possible
mechanisms include the regulation of extraintestinal T cell
populations, development of oral immune tolerance through
regulatory T cells (Tregs), production of short-chain fatty
acids (SCFAs), and regulation of systemic inflammation
[113]. The immune cells and cytokines induced by the gut
microbiota and its metabolites, such as SCFAs, can enter sys-
temic circulation through the blood and lymphatic system,
which regulate the immune and inflammatory responses in
the lung and further influence respiratory health and disease
(Figure 1). For example, exaggerated allergic airway inflam-
mation in GF mice was correlated with increased T helper 2
(Th2) cytokine (IL-4 and IL-5) and IgE levels in the lung
[114]. The commensal gut microbiota can enhance host
defense against bacterial pneumonia by increasing IL-17A
levels and upregulating pulmonary granulocyte-macrophage
colony-stimulating factor (GM-CSF) signaling [115]. In
antibiotic-treated mice, a greatly increased mortality due to
respiratory viral infection was related to a decreased abun-
dance of Tregs in the respiratory and GI tracts [116], and
increased pulmonary colonization byMtb was associated with
a significantly reduced accumulation of mucosal-associated
invariant T (MAIT) cells in the lungs [89]. Table 1 summarizes
our current understanding of the possible mechanisms of the
gut microbiota acting on common respiratory diseases.

Currently, the mechanisms of probiotic regulation of
lung health and disease have become a research hotspot
since there is increasing evidence that probiotics have pro-
tective and therapeutic effects on respiratory diseases by
optimizing microbial balance in the GI tract (Table 1). Oral
administration of probiotics contributes to regulating respi-
ratory immune responses through numerous signaling path-
ways. For example, Bifidobacterium bifidum can stimulate
the Th1/Th2 balance and upregulate IFN-γ, IL-4, and IL-

12 secretion in the spleen [139]; Escherichia coli can reduce
respiratory inflammatory cell recruitment as well as Th2
and Th17 responses [140]; Enterococcus faecalis suppresses
Th17 cell development in the lung, spleen, and gut [141];
and Lactobacillus plantarum can reduce the numbers of
lung innate immune cells (macrophages and neutrophils)
and levels of cytokines (IL-6 and TNF-α) in the BALF
and induce an immunosuppressive Treg response in the
lungs [142]. Despite these effects, the precise mechanisms
underlying probiotic effects on the lung and many aspects
of the probiotic regulation of immune responses remain
largely unknown.

6. Conclusions

Increasing evidence suggests an important and complex
crosstalk between the gut and lung, as well as between the
gut microbiota and host immunity. Gut microbial dysbiosis
is believed to be associated with the etiology or/and develop-
ment of common respiratory diseases, such as asthma,
COPD, CF, lung cancer, and respiratory infection. To date,
the understanding of the mechanism involving the gut-lung
axis is still in its infancy and remains to be further elucidated.
Future research into modification and improvement of the
gut microbiota and into the balance of gut and lung immu-
nity through diet, probiotics, and FMT is necessary to
improve our understanding of the role of gut microbiota in
the lung and to provide effective and new therapeutic strate-
gies for respiratory diseases.
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Table 1: Continued.

Respiratory
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Possible mechanisms References
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Decrease proinflammatory cytokine (TNF-α and CXCL1) levels and
neutrophil influx while produce large amounts of IL-10 in the lungs.
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FMT Normalize the pulmonary TNF-α and IL-10 levels. [82]

Probiotics
Activate the TLR-signaling pathway through the protein Mal. [85]

Enhance the mRNA expression of IFN-γ, IL-12a, IL-2rb, IL-12rb1, PRF1,
Klrk1, CD247, and TNF-α in the lung.

[138]

ALI FMT
Reduce TNF-α, IL-1β, and IL-6 levels by downregulating the

TGF-β1/Smads/ERK signaling pathway.
[102]

ALI: acute lung injury; BAX: Bcl-2 associated X; CDKN1B: cyclin-dependent kinase inhibitor 1B; CTX: cyclophosphamide; CXCL: C-X-C motif chemokine
ligand; DCs: dendritic cells; ERK: extracellular signal-regulated kinase; FMT: fecal microbiota transplantation; GF mice: germ-free mice; GM-CSF:
granulocyte-macrophage colony-stimulating factor; GZMB: granzyme B; HMGB1: high-mobility group box 1; IFN-γ: interferon-gamma; IκBα: inhibitor of
NK-κB α; Klrk1: killer cell lectin-like receptor subfamily K, member 1; MAIT cells: mucosal-associated invariant T cells; Mal: MyD88 (myeloid
differentiation primary response protein) adaptor protein; MMP9: matrix metalloproteinase 9; Muc: mucin; NF-κB: nuclear factor kappa-B; PPARγ:
peroxisome proliferator-activated receptor gamma; PRF1: perforin; SFB: segmented filamentous bacteria; TLR: toll-like receptor; TNF-α: tumor necrosis
factor alpha; Tregs: regulatory T cells; VEGFA: vascular endothelial growth factor A.
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